

AFRL-IF-RS-TR-2004-334
Final Technical Report
December 2004

COMPOSABLE FORMAL MODELS FOR HIGH-
ASSURANCE FAULT TOLERANT NETWORKS

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. N442

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-334 has been reviewed and is approved for publication

APPROVED: /s/
 DAVID E. KRZYSIAK
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, JR.
 Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED
FINAL Jun 02 – Jun 04

4. TITLE AND SUBTITLE

COMPOSABLE FORMAL MODELS FOR HIGH-ASSURANCE FAULT
TOLERANT NETWORKS

6. AUTHOR(S)

Carolyn Talcott

5. FUNDING NUMBERS
C - F30602-02-C-0130
PE - 62301E
PR - N442
TA - FT
WU - N1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
333 Ravenswood Avenue
Menlo Park CA 94025-3493

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-334

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: David E. Krzysiak/IFGA/(315) 330-7454 David.Krzysiak@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This effort carried out substantial case studies involving analysis of different network services in order to develop
modeling and analysis methodologies and libraries of reusable models to aid in achieving higher assurance for and
more robust designs of network systems. There are four main results: 1) an analysis of a java secure proxy toolkit with
models of attacks, mitigations, and patterns; 2) a modular formal executable model of the secure spread group
communications system; 3) formal models of Distributed Denial of Service (DDoS) attacks and mitigation services
complementing OPNET simulations; and 4) a first prototype of Mobile Maude.

15. NUMBER OF PAGES14. SUBJECT TERMS
network services case studies, Distributed Denial of Service (DDoS) attacks, DDoS attack
mitigation, formal models 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

17

 i

Table of Contents

1.0 Introduction and Overview... 1

2.0 Java Secure Proxy Toolkit (SPTK) .. 2

3.0 Distributed Denial-of-Service Attacks ... 5

4.0 Secure Group Communication ... 6

5.0 Mobile Maude... 9

6.0 References .. 12

List of Figures

Figure 1: Analysis Results for Attacker in the Network... 4

Figure 2: Analysis Results for Compromised Registry .. 5

Figure 3: Secure Spread Architecture ... 7

Figure 4: Mobile Maude: object and message mobility.. 10

 1

1.0 Introduction and Overview

A two-year project received funding of $999, 739, out of a budgeted ceiling of
$1,199,739. Senior personnel were Dr. Carolyn Talcott (PI) and Prof. Jos´e Meseguer.
Other team members included Dr. Steven Eker, Dr. Mark-Oliver Stehr, and Ambarish
Sridharanarayanan. Driven by a series of substantial case studies, the project aimed to
develop modeling and analysis methodologies and libraries of reusable models to enable
network systems to achieve higher assurance and more robust designs.

Several candidates for case studies were identified among systems being developed as
part of the Fault Tolerant Networks (FTN) and Dynamic Coalitions (DC) DARPA
programs. After preliminary investigations, three were selected for detailed formal
modeling and analysis: the Java Secure Proxy Toolkit (Stanford-SRI DC project), Secure
Spread (The Johns Hopkins University (JHU) DC project), and Distribute Denial of
Service models (JHU APL FTN project). An additional task was the development of a
prototype of Mobile Maude. The formal models, analyses, documentation, and slide
presentations developed under this contract are available from the project Web site at
http://www-formal.stanford.edu/clt/FTN.

The models were developed using the rewriting logic language Maude. Rewriting logic
[11, 13] is a simple logic well suited for distributed system specification, that is
executable and reflective (capable of faithfully representing important aspects of its own
syntax and deductive/computation mechanisms [8]). The Maude system is an
implementation of rewriting logic and its reflective capabilities. Maude 2.0 was released
in June 2003, with a system presentation at the Rewriting Techniques and Applications
conference in Valencia. In addition to many efficiency improvements in the rewriting
engine, Maude 2.0 implements an object and message fair rewriting strategy that is
important for the development of Mobile Maude. Maude 2.1 was released in March 2004,
with a system presentation at the Workshop on Rewriting Logic and Applications in
Barcelona. Maude 2.1 provides several new reflective capabilities and operations for
module composition and renaming. As of version 2.0 Maude is open source and the
source tree, binaries for several platforms, documentation, examples, and papers are
available on the Maude Web site at maude.cs.uiuc.edu (mirrored at maude.csl.sri.com).

The products of the case studies include:

• Executable attack models for Java’s proxy-based remote service
• Abstract models of crypto libraries (supporting the CLIQUES API)
• Modular executable models of the Spread group communication system and its

extensions to support virtual synchrony and secure communication—these models
were designed to be easy to modify in order to support prototyping and analysis of
alternative algorithm design decisions

• New compositional modeling and formal analysis techniques
• Models of Distributed Denial-of-Service (DDOS) attacks and mitigation technologies
• Maude modules defining the prototype Mobile Maude infrastructure and examples of

mobile agent code

 2

The three case studies and Mobile Maude prototype are summarized below. Full details
are presented in supporting documents (available from the project web site).

2.0 Java Secure Proxy Toolkit (SPTK)

The Secure Proxy Toolkit (SPTK), based on Java RMI and Jini technologies, was
developed by John Mitchell, Ninghui Li, and Derrick Tong as part of the Stanford-SRI
Dynamic Coalitions project Agile Management of Dynamic Collaboration. The objective
of this case study was to formally model and analyze the SPTK. An additional objective
was to use this case study as an example of how to develop and organize models of such
systems, to model different attacks, and to analyze the service models for them in the
context of possible attacks. The resulting models and analyses are available at www-
formal.stanford.edu/clt/FTN/SPTK/index.html along with a tutorial document describing
the models and analyses in some detail. Here we summarize this work.

In a distributed system in which servers wish to make services available to remote clients,
the objective of a service proxy mechanism is to facilitate client-server interaction by
providing:

1. Mechanisms for service registration and lookup,
2. Proxies that make the communication appear local to both the client and the

server processes.

A secure proxy toolkit (SPTK) should satisfy the above requirement and also should
transparently support a variety of security properties: protecting information
communicated between client and server, assuring client and server of each other’s
identity, and enforcing access policies. Thus, it should provide fixed interfaces to client
and server applications. Only the internal interactions change in order to provide
protection against given threat conditions or meet different security needs.

The design of the SPTK was motivated by the following security goals:

I --Proxy access to client JVM and resources is controlled—this can be addressed by Java
security mechanisms.

II --Communications between proxies and services are secure—this can be addressed by
proxies that use secure remote communication such as SSL, but can the client rely on the
proxy it receives being such a proxy?

III --Clients should be able to authenticate proxies—both code and data.

IV --Some applications require services to authenticate and authorize client access,
supporting

• authentication only once in a session (single signon)
• multiple authentication mechanisms
• authorization based on arguments of calls.

 3

The first step in developing the formal models was to define event diagrams
characterizing the underlying protocols and main scenarios for use of the toolkit. This
was done in collaboration with the Stanford group. A key issue was determining what
properties to check. The starting point was the informal list of desired properties given
by John Mitchell in his project presentation. These properties concerned mutual
authentication of client and server, independent of the (possibly hostile) behavior of
Registry/Lookup services. In the process of developing the event diagrams an omission
in the toolkit design was discovered that allowed a client to authenticate a signed proxy
for a wrong service. This has been corrected in both the implementation and the formal
model.

A modular series of formal executable models was developed using Maude. Each model
in the series provides an additional level of security protection of client and server,
ranging from no protection to signed proxies and authenticated secure session
communication. The latter models the Secure Proxy Java Toolkit developed by Stanford.

Level 0 is for use in a situation with no attacker. The job of the client and server side
proxies is simply to make interaction appear local to the application and service,
respectively. This level achieves security goal I by relying on the underlying JVM to
protect the host system.

Level 1 provides protection against an attacker that can observe and modify
communications between the client and server. Such an attacker aims to obtain a client’s
private information and might also modify service calls and replies. The level 1 proxies
communicate using secure connections (for example SSL). This level achieves security
goal II.

Level 2 provides protection against an attacker that can observe and modify
communication between the lookup service and client or server as well as client server
communication. To foil the attacker, the level 2 server toolkit signs the proxy, before
registration; thus, modification can be detected. The client-side toolkit checks whether a
proxy obtained by lookup was registered by a trusted server by checking the signature.

Level 2a includes a service description contained in the registered proxy. The client-side
toolkit additionally confirms that the proxy received has an acceptable description. This
level achieves security goal III.

Level 3 adds client authentication to ensure that the requests are from the claimed client
and that they are allowed for this client. This prevents an attacker from impersonating a
client, thus possibly corrupting the server’s data or obtaining client secrets that result
from queries containing only public data. The toolkit also sets up a secure session
between the mutually authenticated server and client. This level achieves security goal
IV.

Two attack models were developed: attacker-in-the-ether and compromised registry. The
attacker-in-the-ether has control over the network and is free to modify or generate
messages. (Deleting messages is not considered as we are not protecting against denial-
of-service attacks.) A compromised registry may reply to lookup requests with any proxy
it chooses.

 4

The toolkit models were analyzed in composition with attackers. Figures 1 and 2
summarize the analysis results for each level and attack model. In these summaries,
columns are labeled by the property checked (described in the accompanying key) and
the rows correspond to SPTK models providing the different security levels. The symbol
+ means the attacker succeeds, while – means that the attacker fails.

The attacks demonstrate the need for not only checking signatures, but also that the proxy
represents the requested service.

Figure 1: Analysis Results for Attacker in the Network

1.1 attacker can see/modify client data sent in service calls and replies
1.2 client accepts wrong proxy
1.3 unauthorized service call succeeds
1.4 imposter succeeds in forging client id

Figure 1 summarizes analyses for the “attacker in the network” attack model, while
Figure 2 summarizes analyses for the “compromised registry” attack model.

In both cases, we see that all the attacks succeed when the level 0 toolkit is used, while
none succeed when the level 3 toolkit is used. For attacks on client-server
communication (1.1), level 1 protection is sufficient. In the case of the compromised
lookup service, we do not worry about client-server communication, but we do sanity
check to see if it is possible for the client to find and use the requested service; here, the +
means that the client can succeed in all cases. For attacks on communication with the
registry (1.2), level 2 protection is sufficient if both the server signature and the service
description are checked (level 2a).

The distinction is made more precise in the compromised registry model where level 2f is
sufficient protection to keep the client from accepting a proxy to a service provided by an
untrusted server (property 2.2), while level 2a is required to assure that a proxy to the
correct service is accepted (2.3). Properties 1.3, 1.4, and 2.4 deal with situations in which
the server is tricked into serving improper requests. These attacks require level 3
protection.

 5

Figure 2: Analysis Results for Compromised Registry

2.1 client can obtain proxy for requested service (sanity check)
2.2 client accepts proxy to attacker service
2.3 client accepts wrong trusted server proxy
2.4 service integrity violated

3.0 Distributed Denial-of-Service Attacks

One objective is to add formal aspects to the model verification and validation done for
DDoS attack models studied as part of a Johns Hopkins University Applied Physics
Laboratory (JHUAPL) FTN project. The first issue is to determine which attacks and
mitigation technologies are most amenable to the Maude modeling and analysis
capabilities. In discussion with the JHUAPL team we determined to start with attacks for
which classification mitigation technologies exist. Our first effort will be to model and
analyze the TCP SYN flood attack and Synkill active monitoring technology recently
studied by JHUAPL. Looking for misclassifications is of interest.

Network simulators can be used as a test bed for analyzing networks where
implementation is infeasible either because of the premature nature of the ideas, or
because of resource constraints. Maude’s capability as a programming language and as a
powerful formal analysis tool has helped us in implementing a prototype network
simulator in Maude. The current version has basic support for discrete time, multiple
nodes, multiple layered networks, and routing. A mechanism is in place for generating
events (such as requests, packets) statistically.

Using this infrastructure, and in cooperation with Donna Gregg’s group at JHU-APL, we
have simulated a DoS attack on a 70-node low-connectivity network. In addition, a
counterstrategy for DoS attacks proposed by Gene Spafford’s group at Purdue, known as
synkill has also been formally specified as a test case. Using Maude’s formal analysis
mechanisms, we have found some potential problems in the working of the synkill
algorithm, where the algorithm misclassifies certain malicious hosts as benign.

 6

4.0 Secure Group Communication

The aim of this case study was to provide an executable formal model of the services
provided by the Secure Spread group communication system (a Johns Hopkins
University CS Department DC project, http://www.cnds.jhu.edu/ research/group/
secure_spread/), and to develop mechanisms for model validation and lightweight
analysis. The basic service a group communication system (GCS) provides is multicast of
messages to groups that it manages. A GCS accepts send requests from applications and
delivers multicast messages received. In addition to send and delivery events, there are
view installation events delivering view messages to application processes. A view has
an identifier, a set of member processes (the current members), and a set of transitional
processes (those coming from the same view as the receiving process). GCS events are
partially ordered according to arrival order at a given process, and send precedes a
delivery causal order across processes. A message send or delivery event at a process is
said to be ‘in’ the view whose installation at the process most recently precedes this
event.

A number of properties should hold for a GCS (see [5, 14] for details). For example, Self
Inclusion: if a process installs a view, it is a member of that view.Sending View Delivery:
a message is delivered in the view in which it was sent. Self Delivery: if a process sends
a message, it will deliver that message unless it crashes.

Virtual Synchrony: if two processes move together from one view to the next, they
deliver the same messages in the first view. We refer to these as virtual synchrony (VS)
properties. Spread implements an extended virtual synchrony (EVS) semantics that
weakens the Sending View Delivery property to Same View Delivery: if two processes
deliver a message, they both deliver it in the same view.

In addition, a GCS may provide different types of message delivery service with different
reliability and ordering guarantees: reliable, fifo, causally ordered, totally ordered (also
called agreed), or safe, where the latter means that messages are delivered only if it is
known that everybody in the group has actually received it.

 7

Figure 3: Secure Spread Architecture

The modular architecture of Secure Spread is shown in Figure 3. The implementation of
Spread is based on two-level architecture: a configuration layer that manages the physical
group of processors (which can be partitioned depending on the network connectivity)
and a group layer that manages logical groups of agents. From discussions with the
Spread team we determined that [2] is intended as the specification of the configuration
layer and [14] should be regarded as the specification of the group layer. Both the
configuration layer and the group layer provide extended virtual synchrony, and the
objective of [14] is to show how this can be used to obtain virtual synchrony as
implemented in Flush Spread. Finally, [1] shows how Secure Spread, a layer for secure
group communication, can be built on top of Flush Spread and the Cliques toolkit [17, 4],
a C library (see http://sconce.ics.uci.edu/cliques/) that supports group key agreement
and is to a large degree independent of the group communication system.

A formal executable model of Secure Spread was developed in Maude. The model is
modular with independently executable and testable components formalizing the two
layers of Spread, the Flush Spread VS extension, the API of the CLIQUES cryptographic
service, and Secure Spread. Sources used for developing these models included, in
addition to the documents cited above, a user’s guide [3], the Spread sources and online
API documentation [15, 16], and many helpful discussions with the Spread group at JHU.
An important goal was to obtain a mathematically satisfactory and concise description
that abstracts from implementation specific aspects and covers the most general behavior
that an application of Spread can observe. The resulting specification serves as precise
documentation that models the behavior intended to be observable and clarifies the
virtual synchrony and ordering guarantees provided by each component. In addition, the
suite of formal models should serve as a tool for testing alternative algorithm designs,
semantic guarantees, and extensions in functionality. A future possibility is to use this
model as the basis for the replicated database application built on Spread.

A number of issues arose in developing the models. These are briefly indicated below.
Details can be found in the “Lessons Learned” document on the case study Web site.

 8

Configuration Layer. At the configuration layer we needed to generalize the conditions
of [2] to include all message types, since [2] covers only three delivery modes—namely,
causal, agreed, and safe, but not reliable and fifo. The causal order delivery conditions of
[2] conflict with self-delivery if generalized to include other message types

Group Layer. In addition to messages discussed in [14], the Spread group layer API
provides group join and leave messages and client connect and disconnect (the latter
entailing change in all groups of which the client is a member). We had to rely on our
understanding of the source code to determine the semantics of these messages. We also
defined a notion of private group to model unicast, needed for Secure Spread.

Flush Spread. The specification of Flush Spread relied mainly on [14]. Both the
implementation and modeling of Flush Spread were made easier by the clearly spelled-
out API for Spread.

Cliques. Our goal for this component was to come up with a formal specification that
exactly captures what has been implemented for the capabilities of the Cliques Toolkit
used in Secure Spread, and also captures the generic nature of the Cliques API so that
further capabilities can be added without major modifications. The available
documentation was somewhat outdated and we had to rely to a large degree on
understanding of the C code. The result is a rather abstract but realistic specification.

Secure Spread. (seehttp://www.cnds.jhu.edu/research/group/secure_spread/) Provides
the glue between Flush Spread and the Cliques toolkit. We specified the basic algorithm,
formulated as a state machine, as presented in [1]. A few gaps had to be filled in and
small errors corrected. For example, treatment of a join was not clear in the state
machine specification. To maintain a consistent state at the group layer in our
specification, events are handled even when the state machine is not yet running for a
particular group (the client has not joined). The state machine description also makes an
illegal call to the Cliques API. Our specification provides one solution, and the
implementers have provided another. Also, some assignments in the state machine
description should be Cliques procedure calls.

Since we built the specification of Secure Spread on well-tested building blocks—
namely, the Flush Spread and the Cliques specifications—the effort that we spend on this
layer was very reasonable. We expect that it would be very easy to optimize the
algorithm as discussed in [1], because all the necessary subprotocols are provided by the
Cliques specification.

Since Spread accounts for process failure and network partitions as well as asynchronous
application input, both the system and its formal model are highly nondeterministic. To
manage the complexity of analysis in the presence of massive nondeterminism, we
developed the notion of controller process that can be composed with an initial system
configuration to constrain the reachable state space and to drive the execution to specific
situations of interest, that is, to constrain execution to an abstract scenario of interest.
This provides a useful form of analysis that gives broader coverage than testing and can

 9

be applied to larger initial configurations than unconstrained search or model-checking.
We have defined a simple controller language based on sequential and parallel
composition of actions. The actions directly correspond to the rewrite rules of our system
that we would like to control.

In addition to controller-based analysis, we defined variants of the published axioms for
group communication systems [5, 14] as properties of the Maude models for the
configuration and group layers and sketched proofs that the Maude specification satisfies
relevant axioms. The process of determining the relevant and desired properties for each
layer and working out proofs raised a number of issues regarding the intended behavior
of Spread from different points of view, and exposed some problems with the formal
specification that were subsequently fixed.

Although [2] clearly documents the configuration layer, and [14] is intended to capture
the group layer, it seemed meaningful to reinterpret [14] and apply it to the configuration
level (thinking of a configuration as a single physical group). If we interpret send from
the Spread daemons point of view, the Sending View Delivery property holds and from
that Same View Delivery for send interpreted from the client application’s point of view
can be inferred. The conflict between Self Delivery and causal order delivery was
discovered while we carried out this validation of the configuration layer. Generalizing
these properties to the case in which view changes are caused not only by network
change but also by joins, leaves, and disconnects unearthed new problems with the Same
View Delivery property, namely, join/leave notifications are implemented as agreed
messages, but reliable, fifo, and causal messages can be delivered before or after
depending on the process. Hence, Same View Delivery can be violated for messages
lower than agreed. The modularity and compositionality techniques used in developing
the Secure Spread specification were essential to managing the complexity inherent in
developing faithful specifications of real systems. The benefits of this approach include:

• Understanding of each component in isolation
• Modular testing and analysis
• Modular structure of specification leading to a modular structure of proofs
• Allowing parallel development and collaboration.

The models, analyses, reinterpreted GCS properties, informal proofs, and supporting
documentation can be found at http://formal.cs.uiuc.edu/stehr/spread_eng.html (also
accessible from the project Web site).

5.0 Mobile Maude

Mobile Maude is a Mobile Agent language extending the rewriting logic [11] language
Maude [7, 6] and supporting mobile computation. Mobile Maude uses reflection to
obtain a simple and general declarative mobile language design and makes possible

 10

strong assurances of mobile agent behavior. The two key notions are processes and
mobile objects. Processes are located in computational environments where mobile
objects can reside. Mobile objects have their own code, can move between different
processes in different locations, and can communicate asynchronously with each other by
means of messages.

Figure 4: Mobile Maude: object and message mobility

Figure 4 illustrates a prototypical Mobile Maude system with two located processes and
three mobile agents, where agent 03 is moving from one location to another. In addition,
agent 01 is sending a message to agent 02. Each mobile object is created by some
process, and that process is responsible for keeping track of the location of the mobile
object in order that messages may be delivered.

The Mobile Maude prototype consists of a collection of Maude modules specifying
infrastructure to support modeling, prototyping, and analysis of mobile agents. The
initial design of Mobile Maude was presented in [9]. The implementation is founded on
the Russian Dolls reflective distributed object framework [12] and the IMaude
environment [10] for interacting with Maude specifications. The communication
infrastructure for Mobile Maude is provided by the IOP interoperability platform [10].

In the Russian Dolls framework an object has an identifier, a class identifier, a set of
attributes (fields), and an interface. The behavior of an object is specified by a set of
rewrite rules associated to the objects class. Objects may be nested, hence the Russian
Dolls metaphor. The object’s interface makes explicit its points of interaction with its
environment, both its peers and its containing object, if any. In Mobile Maude an
interface consists of two message queues, one for incoming messages and one for
outgoing messages.

Formally, a located process (briefly a process) is an object whose attributes include a
configuration of mobile objects and messages, and a mapping from identifiers of objects
it has created to the object’s last known location and the number of hops the object took

 11

to reach its last location. Each time a mobile object arrives at a new location (as the
contents of a message) the receiving process notifies the object’s creator of the new
location and hop count. The hop count is used to identify stale location information. A
process also keeps information to allow it to generate a new identifier each time it creates
a mobile object.

A mobile object carries its code and state with it when it moves to a new location. The
code for a Maude object is the module containing the declarations for the object attributes
and the rewrite rules specifying its behavior. Reflection is used to transform code and
state into data that can be understood by any located process. In particular, a mobile
object has two levels (indicated by the double oval in Figure 4): a meta level (called the
mobile object wrapper), and a base level (called the base object or base agent). A mobile
object wrapper has the same attributes for all mobile objects. These consist of
metarepresentations of the base object and of the module specifying the base object
behavior, an integer recording the number of hops that the object has made (initially 0), a
bound on the number of rewrites the object can use in any execution step, and auxiliary
data used to keep track of the wrapper’s processing state. The bound on rewrites is a
form of resource management and is used to ensure that all mobile objects in a given
location will have a fair share of the available resources.

The rules for located process behavior specify how messages output by its mobile objects
are processed, and how it processes messages from peer located objects. The interesting
mobile object message is the go message which specifies the target location as well as the
data needed to reconstitute the object at the new location. This is turned into an install
request addressed to the peer process location, and dually when a process receives an
install request it reconstitutes the mobile object in its configuration and reports the new
location. In addition, processes send and receive requests to route messages to mobile
objects. These are handled using the object location mapping.

The rules for the mobile object wrapper specify how the wrapper manages its base object.
Messages sent by the base level to peers are forwarded to the peer wrapper for delivery,
and messages for delivery received from peer wrappers are delivered to the base object,
using the reflected evaluation and rewriting functions. Requests for new object creation
are modified by adding a mobile object wrapper to the object specification. Mobility for
a base object means that it can send messages of the form go(loc). To process such a
message, the mobile wrapper packages its identifier, class id, attributes (which include
the base object and code module), and interface queues and turns itself into a request to
go to the location specified by the base object, containing the packaged information.

Using the Mobile Maude infrastructure, to specify a mobile agent system the user needs
only to specify the behavior of base objects. These are ordinary Maude objects with the
Russian Dolls object structure, specified by defining the class ids, attributes, and contents
of messages sent to peers. In addition to peer-to-peer messages, a base mobile object
may send new object requests (handled by the container process) and go requests.

 12

The Mobile Maude infrastructure is designed with independently executable layers to
allow incremental testing and validation of mobile agent specifications. A system of base
objects may be executed by importing a module that defines base mobile object system
composition by adding necessary communication rules. Here, location is simply in the
mind of the object and the object marshaling and unmarshaling operations are not needed.
A configuration of mobile wrapper objects can be executed by importing a module that
defines wrapped mobile object system composition and communication rules. Finally, a
collection of located processes can be executed by importing a module that defines
process communication rules. This can all be done by using the Maude command line
interface. This approach has the limitation that interaction with the mobile system cannot
be controlled, and all messages to be considered must be present in the initial
configuration. By using an IMaude execution environment the user can start a system,
and incrementally send messages and receive replies, giving a more controlled test
environment. This environment is included in the Mobile Maude implementation
package.

A simple example of a data mobile that goes from place to place collecting data and
answering queries is included with infrastructure modules along with example test runs to
illustrate the process of defining and testing mobile object systems.

The Mobile Maude prototype, execution environments, example and documentation can
befound at http://www-formal.stanford.edu/clt/FTN/MobileMaude.

6.0 References

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton, and G. Tsudik. Secure group
communication using robust contributory key agreement. IEEE Transactions on Parallel
and Distributed Systems Archive, 15(5):468–480, 2004.

[2] Yair Amir. Replication Using Group Communication Over a Partitioned Network.
PhD thesis, Hebrew University of Jerusalem, 1995.

[3] Yair Amir and Jonathan Stanton. A user’s guide to Spread, October 2002. Available
from the Spread Web site http://www.spread.org.

[4] G. Ateniese, O. Chevassut, D. Hasse, Y. Kim, and G. Tsudik. The design of a group
key agreement API. In DARPA Information Survivability Conference and Exposition
(DISCEX 2000). IEEEE, January 2000.

[5] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication
specifications: A comprehensive study. ACM Computing Surveys, 33(4):1–43, December
2001.

[6] M. Clavel, F. Dur´an, S. Eker, P. Lincoln, N. Mart´ı-Oliet, J. Meseguer, and J.
Quesada. Maude: Specification and programming in Rewriting Logic. Theoretical
Computer Science, 285(2), 2002.

 13

[7] M. Clavel, F. Dur´an, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott.
Maude 2.0 Manual, 2003. http://maude.cs.uiuc.edu.

[8] Manuel Clavel and Jos´e Meseguer. Reflection in Conditional Rewriting Logic.
Theoretical Computer Science, 285:245–288, 2002.

[9] Francisco Dur´an, Steven Eker, Patrick Lincoln, and Jos´e Meseguer. Principles of
Mobile Maude. In Agent Systems, Mobile Agents, and Applications, ASA/MA 2000,
volume 1882 of Lecture Notes in Computer Science, pages 73–85. Springer-Verlag,
2000.

[10] I. A. Mason and C. L. Talcott. IOP: The InterOperability Platform & IMaude: An
interactive extension of Maude. In Fifth International Workshop on Rewriting Logic and
Its Applications (WRLA’2004), Electronic Notes in Theoretical Computer Science.
Elsevier, 2004.

[11] J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[12] J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection. In
European Conference on Object-Oriented Programming, ECOOP’2002, volume 2374 of
Lecture Notes in Computer Science, pages 1–36, 2002. invited paper.

[13] Jos´e Meseguer. A logical theory of concurrent objects and its realization in the
Maude language. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Programming, pages 314–390. MIT Press,
1993.

[14] John Schultz. Partitionable virtual synchrony using extended virtual synchrony.
Master’s thesis, The Johns Hopkins University, 2001.

[15] Spread souce code. version 2.1.0. Available at www.spread.org.

[16] Spread souce code. version 2.17.2rc3. Available at www.spread.org.

[17] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.
IEEE Transactions on Parallel and Distributed Systems, August 2000.

